教員紹介トップページへ

三重大学トップページへ

三重大学教員紹介

教員情報

職名
准教授
氏名
つもと かんた
湊元 幹太
生年月
1975.08
所属
部局
工学研究科
学科・専攻
分子素材工学専攻
講座
生物機能工学
教育研究分野
分子生物工学
TEL
 
FAX
 
E-mail
tsumoto@chem. (末尾に mie-u.ac.jp を補ってください)
個人のホームページ
学歴
1998 東京大学理学部生物化学科卒業
2002 名古屋大学大学院人間情報学研究科物質・生命情報学専攻博士後期課程修了
学位
2002.10 博士(学術) 名古屋大学
所属学会
日本生化学会,日本生物物理学会,日本化学会,生命化学研究会,「細胞を創る」研究会,アメリカ化学会,ナノ学会,日本化学会生体機能関連化学部会,日本化学会バイオテクノロジー部会,日本農芸化学会,Materials Research Society
社会活動
 
職歴
2002.12~2007.03 三重大学 助手
2007.04~2008.01 三重大学 助教
2008.02~2015.10 三重大学 講師
2015.11~ 三重大学 准教授
学術(芸術)賞
・2004 Outstanding Poster Award, 3rd Place; Kanta Tsumoto, Makoto Inaba, Shin-ichirou M. Nomura, Tsutomu Hamada, Kenichi Yoshikawa, and Tetsuro Yoshimura; Giant Vesicles as a Biochemical Microreactor for Modeling a Cell; 9th Liposome Research Days
・Best Poster Award; K. Tsumoto, K. Kamiya and T. Yoshimura, "Display of Recombinant Membrane Receptors on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane Protein Systems", IEEE 2007 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2007 Micro-Nano COE (2007)
・2009年(第17回)JB論文賞(日本生化学会), H. Fukushima, M. Mizutani, K. Imamura, K. Morino, J. Kobayashi, K. Okumura, K. Tsumoto, and T. Yoshimura, “Development of a Novel Preparation Method of Recombinant Proteoliposomes Using Baculovirus Gene Expression Systems”, Journal of Biochemistry, Vol.144 No.6, 763-770(2008)
・若手優秀発表賞 ナノ学会第8回大会(平成22年5月14日)
専門分野
リポソーム工学,生物化学,生物物理学
現在の研究課題
・糖含有薄膜水和法や逆相遠心法をはじめとする巨大リポソーム新規形成法の開発と応用
・細胞模倣材料の作製と機能評価
・生体高分子の相分離と機能相関
・膜タンパク質システムの再構成と人工細胞膜の機能化
担当科目
化学基礎I・II,化学実験II,生物化学B,生物化学演習B,化学B,生物機能化学演習II,生物工学演習I,生物工学特論,生物材料機能設計演習
主な業績等
<原著論文>
・A reverse-phase method revisited: Rapid high-yield preparation of giant unilamellar vesicles (GUVs) using emulsification followed by centrifugation; 共著, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2018) 546, 74-82. DOI: 10.1016/j.colsurfa.2018.02.060
・Opposite effect of polyamines on In vitro gene expression: Enhancement at low concentrations but inhibition at high concentrations; 共著, PLoS ONE (2018) 13 (3), e0193595. DOI: 10.1371/journal.pone.0193595
・Huntingtin Polyglutamine-Dependent Protein Aggregation in Reconstituted Cells; 共著, ACS Synthetic Biology (2018) 7 (2) 377–383. DOI: 10.1021/acssynbio.7b00372
・The Aqueous Two Phase System (ATPS) Deserves Plausible Real-World Modeling for the Structure and Function of Living Cells; 共著, MRS Advances (2017) 2 (45) 2407-2413. DOI: 10.1557/adv.2017.358
・Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins; 共著, Colloids and Surfaces B: Biointerfaces (2017) 155, 248–256. DOI: 10.1016/j.colsurfb.2017.04.027
・The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins; 共著, Bioscience, Biotechnology, and Biochemistry (2016) 80(3), 445-451. doi:10.1080/09168451.2015.1101331
・Does DNA Exert an Active Role in Generating Cell-Sized Spheres in an Aqueous Solution with a Crowding Binary Polymer?; 共著, Life (2015) 5(1), 459-466. doi:10.3390/life5010459
・Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles; 共著, Biotechnology Letters (2014) 36 (6), 1253–1261. doi:10.1007/s10529-014-1485-6
・Crowding by Anionic Nanoparticles Causes DNA Double-Strand Instability and Compaction; 共著, The Journal of Physical Chemistry B (2014) 118 (5), 1256–1262. doi:10.1021/jp4107712
・pH Switching That Crosses over the Isoelectric Point (pI) Can Improve the Entrapment of Proteins within Giant Liposomes by Enhancing Protein-Membrane Interaction; 共著, Langmuir (2014) 30(2), 554-563. doi:10.1021/la403361j
・The binding of soluble recombinant human Fcγ receptor I for human immunoglobulin G is conferred by its first and second extracellular domains; 共著, Molucular Immunology, (2013) 54(3-4), 403-407. doi:10.1016/j.molimm.2013.01.007
・Engineering of recombinant human Fcγ receptor I by directed evolution; 共著, Protein Engineering, Design & Selection, (2012) 25(12), 835-842. doi:10.1093/protein/gzs053
・Efficient expression of recombinant soluble human FcγRI in mammalian cells and its characterization; 共著, Protein Expression and Purification, (2012) 82(1), 155–161. doi: 10.1016/j.pep.2011.12.006
・Monitoring of membrane collapse and enzymatic reaction with single giant liposomes embedded in agarose gel; 共著, Colloid Polym. Sci., (2011) 289(12), 1337-1346. doi:10.1007/s00396-011-2463-3
・Cadherin-integrated liposomes with potential application in a drug delivery system; 共著, Biomaterials, (2011) 32(36), 9899-9907. doi: 10.1016/j.biomaterials.2011.09.008
・Preparation of connexin43-integrated giant liposomes by a baculovirus expression-liposome fusion; 共著, Biotechnol. Bioeng., (2010) 107(5), 836-843. doi:10.1002/bit.22845
・Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles; 共著, Biochim. Biophys. Acta (BBA) Biomembranes, (2010) 1798 (9), 1625-1631. doi:10.1016/j.bbamem.2010.05.011
・Diagnosis and discrimination of autoimmune Graves’ disease and Hashimoto’s disease using thyroid-stimulating hormone receptor-containing recombinant proteoliposomes; 共著, J. Biosci. Bioeng. (2009) 108(6), 551–556. doi:10.1016/j.jbiosc.2009.06.006
・Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar; 共著, Colloids Surf. B: Biointerfaces (2009) 68, 98-105. doi:10.1016/j.colsurfb.2008.09.023
・Development of a novel preparation method of recombinant proteoliposomes using baculovirus gene expression systems; 共著, J. Biochem. (2008) 144(6), 763-770. doi:10.1093/jb/mvn125
・Unbinding of lipid bilayers induced by osmotic pressure in relation to unilamellar vesicle formation;共著, EPL Europhys. Lett. (2007) 80, 48002-p1~p6. doi:10.1209/0295-5075/80/48002
・Enhancement and inhibition of DNA transcriptional activity by spermine: A marked difference between linear and circular templates; 共著, FEBS Lett. (2005) 579, 5119-5122. doi:10.1016/j.febslet.2005.07.095
・All-or-none switching of transcriptional activity on single DNA molecules caused by a discrete conformational transition; 共著, Appl. Phys. Lett. (2005) 86,223901-1~3 doi:10.1063/1.1937990
・Gene Expression Within Cell-Sized Lipid Vesicles; 共著, ChemBioChem (2003) 4, 1172-1175. doi:10.1002/cbic.200300630
・NTP Concentration Switches Transcriptional Activity by Changing the Large-scale Structure of DNA; 共著, Biomacromolecules (2003) 4(5), 1121-1125. doi:10.1021/bm034017w
・Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition; 共著, Biophys. Chem. (2003) 106, 23-29. doi:10.1016/S0301-4622(03)00138-8
・Folding transition of large DNA completely inhibits the action of a restriction endonuclease as revealed by single-chain observation; 共著, FEBS Lett. (2002) 530, 143-146. doi:10.1016/S0014-5793(02)03448-8
・Giant liposome as a biochemical reactor: transcription of DNA and transportation by laser tweezers; 共著, Langmuir (2001) 17, 7225-7228. doi:10.1021/la010887s
・Intra-molecular phase segregation in a single polyelectrolyte chain; 共著, J. Chem. Phys. (2001) 114, 6942-6949. doi:10.1063/1.1342810
・RNA switches the higher-order structure of DNA; 共著, Biophys. Chem. (1999) 82, 1-8. doi:10.1016/S0301-4622(99)00098-8

<国際学会プロシーディングス>
・Giant Liposomes as Microcapsules with Large Trapping Volumes: Downsizing through Various Membrane Filters and Analysis with a Calcein Quenching Method; 共著, IEEE 2011 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2011 Micro-Nano Global COE (2011), pp. 439-444. DOI: 10.1109/MHS.2011.6102228
・G protein Coupled Receptors (GPCRs) Reconstituted on Recombinant Proteoliposomes using Baculovirus-Liposome Membrane Fusion;共著, IEEE 2009 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2009 Micro-Nano COE (2009) , pp. 202-207. DOI: 10.1109/MHS.2009.5351994
・Reconstitution and Microscopic Observation of G Protein Subunits on Giant Liposomes: Attempt to Construct a Cell Model with Functional Membrane Protein Components; 共著, IEEE 2008 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2008 Micro-Nano COE (2008) , pp. 145-150. DOI: 10.1109/MHS.2008.4752439
・Display of Recombinant Membrane Receptors on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane Protein Systems; 共著, IEEE 2007 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2007 Micro-Nano COE (2007), pp. 102-107. DOI: 10.1109/MHS.2007.4420834
・Membrane Fusion between a Giant Vesicle and Small Enveloped Particles: Possibilities for the Application to Construct Model Cells; 共著, IEEE 2006 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2006 Micro-Nano COE (2006), pp. 7-12. DOI: 10.1109/MHS.2006.320308
・Giant vesicle as a simple model of a living cell: Construction of biochemical microreactors; 共著, IEEE Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, MHS 2005 Micro-Nano COE (2005), pp. 85-89.
・DNA conformation and transcriptional properties : a higher-order of silence; 共著, IEEE Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, MHS 2005 Micro-Nano COE (2005), pp. 81-84. DOI: 10.1109/MHS.2005.1589968
・Development of Orally Administrated Liposome Vaccines Against Bacteria- and Virus-Infectious Diseases in Cultured Fishes;共著, In: Immunology 2004 (The proceeding of the 12th International Congress of Immunology, ed. By Skamene, E.) Medimond S.r.l. (Bologna, Italy), p225-228, 2004.

<総説・解説・著書等>
・Production of Monoclonal Antibodies (2016) 25.6 544-545; 共著 In: Culrure of Animal Cells: A Manual of Basic Technique and Specialized Applications, Seven Edition (authoured/edited by R. Ian Freshney), John Wiley & Sons, Inc., Hoboken, NJ. (Jan. 2016, Wiley-Blackwell)
・人工細胞システム構成に役立てたい組換えプロテオリポソーム技術;単著,日本化学会・生体機能関連化学部会ニュースレター,(2014) 28(3),15-18.
・わかる理工系のための化学;共編著, 共立出版, 2012年
・Monoclonal antibodies based on hybridoma technology; 共著, Pharmaceutical Patent Analyst, (2013) 2(2), 249-263. doi: 10.4155/ppa.13.2
・次世代ハイブリドーマテクノロジー;共著, 次世代医薬開発に向けた抗体工学の最前線(熊谷泉 監修),シーエムシー出版,第10章(pp.197-202),2012年
・タンパク質研究における巨大リポソームの利用法;共著,リアルタイム計測による生命現象の解析(村田静昭 監修),シーエムシー出版,第10章(pp.107-116),2011年
・Hybridoma technologies for antibody production; 共著, Immunotherapy (2011) 3(3), 371-380. doi:10.2217/imt.11.4
・Construction of an In Vitro Model of a Living Cellular System; 共著,The Minimal Cell, The Biophysics of Cell Compartment and the Origin of Cell Functionality (P.L. Luisi, P. Stano, Eds.), Springer, Chap 10 (pp.173-193), 2011. doi:10.1007/978-90-481-9944-0_10
・人工細胞ベシクルへのシグナル伝達経路の再構成;単著,ナノ学会会報 (2010) 9(1), 19-23.
・人工細胞研究における巨大リポソーム;単著, 人工血液(2010)18(1), 15-24.
・Recent Advances in Antigen-Based Generation of Monoclonal Antibodies;共著, Current Immunology Reviews (2010) 6(1), 56-61.
・Recombinant Proteoliposomes Prepared Using Baculovirus Expression Systems;共著,Methods in Enzymology, Liposomes Part G (2009) 465, 95-109. doi:10.1016/S0076-6879(09)65005-9
・序論2:細胞機能の模倣とモデルシステムの構築;共著,ナノメディシン -ナノテクの医療応用-(宇理須恒雄編),オーム社,第4章-2(pp.279-285)2008年.
蛍光法-FRETを中心に-;共著,リポソーム応用の新展開~人工細胞の開発に向けて~(秋吉一成,辻井薫監修),エヌ・ティー・エス,第3章第6節(pp.84-89),2005年.
・Genetic Nanomedicine and Tissue Engineering; 共著; Medical Clinics of North America (2007) 91 (5), 889-898. doi:10.1016/j.mcna.2007.05.001
・人工モデル細胞とミクロ・ロボティクス;共著,日本ロボット学会誌(2007) vol.25 (No.2) pp.186-190.
・A message from biomembrane systems: Supramolecular biosystems and system-specific principles, 共著, Recent Res. Devel. Biophys. Biochem. (2003) 3, 585-597.
・DNAの折り畳み転移と遺伝子活性;共著,バイオサイエンスとインダストリー(2003)61, 11-16.
・DNAの高次構造スイッチングと遺伝子発現;共著,生物物理 (2002) 42, 179-184.doi:10.2142/biophys.42.179


教員紹介の掲載内容の更新はこちらから(学内のみ)


三重大学教員紹介の内容について無断転用を禁じます