職名 教授
氏名 つもと かんた
湊元 幹太
生年月 1975.08
所属 部局 工学研究科
学科・専攻 応用化学専攻
講座 生命化学
教育研究分野 分子生物工学
TEL  
FAX  
E-mail tsumoto@chem. (末尾に mie-u.ac.jp を補ってください)
個人のホームページ http://researchmap.jp/read0067280/
学歴 1998 東京大学理学部生物化学科卒業
2002 名古屋大学大学院人間情報学研究科物質・生命情報学専攻博士後期課程修了
学位 2002.10 博士(学術) 名古屋大学
所属学会 日本生化学会,日本生物物理学会,日本化学会,生命化学研究会,「細胞を創る」研究会,アメリカ化学会,ナノ学会,日本化学会生体機能関連化学部会,日本化学会バイオテクノロジー部会,日本農芸化学会,Materials Research Society,日本化学会コロイドおよび界面化学部会
社会活動  
職歴 2002.12~2007.03 三重大学 助手
2007.04~2008.01 三重大学 助教
2008.02~2015.10 三重大学 講師
2015.11~2020.11 三重大学 准教授
2020.12~ 三重大学 教授
学術(芸術)賞 ・2004 Outstanding Poster Award, 3rd Place; Kanta Tsumoto, Makoto Inaba, Shin-ichirou M. Nomura, Tsutomu Hamada, Kenichi Yoshikawa, and Tetsuro Yoshimura; Giant Vesicles as a Biochemical Microreactor for Modeling a Cell; 9th Liposome Research Days
・Best Poster Award; K. Tsumoto, K. Kamiya and T. Yoshimura, "Display of Recombinant Membrane Receptors on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane Protein Systems", IEEE 2007 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2007 Micro-Nano COE (2007)
・2009年(第17回)JB論文賞(日本生化学会), H. Fukushima, M. Mizutani, K. Imamura, K. Morino, J. Kobayashi, K. Okumura, K. Tsumoto, and T. Yoshimura, “Development of a Novel Preparation Method of Recombinant Proteoliposomes Using Baculovirus Gene Expression Systems”, Journal of Biochemistry, Vol.144 No.6, 763-770(2008)
・若手優秀発表賞 ナノ学会第8回大会(平成22年5月14日)
・令和元年度(平成30年度対象)三重大学知的財産表彰・知的財産優秀出願賞
専門分野 リポソーム工学,生物化学,生物物理学,分子生物工学
現在の研究課題 ・糖含有薄膜水和法や逆相遠心法をはじめとする巨大リポソーム新規形成法の開発と応用
・細胞模倣材料の作製と機能評価
・膜タンパク質システムの再構成と人工細胞膜の機能化
・生体高分子およびその溶液の相分離と機能相関
・細胞構造のアナロジー
・メディカル・ライフサイエンスに役立つことをめざす細胞模倣材料の作製と機能評価
担当科目 応用化学基礎I・II,化学実験II,生物化学B,生物化学演習B,化学B,生物工学,生物機能化学演習I・II,生物工学演習I・II,生物工学特論,生物機能化学特論,生物材料機能設計演習
主な業績等 <原著論文>
・Self‐Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid‐Liquid Phase Separation; 共著, ChemBioChem (2020) 21, 3323–3328. DOI: 10.1002/cbic.202000344
・Optimization of stereospecific targeting technique for selective production of monoclonal antibodies against native ephrin type-A receptor 2; 共著, Journal of Immunological Methods (2020) 484–485, Article 112813. DOI: 10.1016/j.jim.2020.112813
・Membrane fusion and infection abilities of baculovirus virions are preserved during freezing and thawing in the presence of trehalose; 共著, Bioscience, Biotechnology, and Biochemistry (2020) 84 (4), 686-694. DOI: 10.1080/09168451.2019.1704396
・B-cell receptor-based multitargeting method for simultaneous production of novel multiple monoclonal antibodies; 共著, Journal of Bioscience and Bioengineering (2019) 128 (5), 578-584. DOI: 10.1016/j.jbiosc.2019.04.015
・Aqueous/Aqueous Micro Phase Separation: Construction of an Artificial Model of Cellular Assembly; 共著, Frontiers in Chemistry (2019) 7, Article 44 (7 pages). DOI: 10.3389/fchem.2019.00044
・Specific Spatial Localization of Actin and DNA in a Water/Water Microdroplet: Self-Emergence of a Cell-Like Structure; 共著,ChemBioChem (2018) (2018) 19(13), 1370-1374. DOI:10.1002/cbic.201800066
・A reverse-phase method revisited: Rapid high-yield preparation of giant unilamellar vesicles (GUVs) using emulsification followed by centrifugation; 共著, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2018) 546, 74-82. DOI: 10.1016/j.colsurfa.2018.02.060
・Opposite effect of polyamines on In vitro gene expression: Enhancement at low concentrations but inhibition at high concentrations; 共著, PLoS ONE (2018) 13 (3), e0193595. DOI: 10.1371/journal.pone.0193595
・Huntingtin Polyglutamine-Dependent Protein Aggregation in Reconstituted Cells; 共著, ACS Synthetic Biology (2018) 7 (2) 377–383. DOI: 10.1021/acssynbio.7b00372
・The Aqueous Two Phase System (ATPS) Deserves Plausible Real-World Modeling for the Structure and Function of Living Cells; 共著, MRS Advances (2017) 2 (45) 2407-2413. DOI: 10.1557/adv.2017.358
・Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins; 共著, Colloids and Surfaces B: Biointerfaces (2017) 155, 248–256. DOI: 10.1016/j.colsurfb.2017.04.027
・The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins; 共著, Bioscience, Biotechnology, and Biochemistry (2016) 80(3), 445-451. doi:10.1080/09168451.2015.1101331
・Does DNA Exert an Active Role in Generating Cell-Sized Spheres in an Aqueous Solution with a Crowding Binary Polymer?; 共著, Life (2015) 5(1), 459-466. doi:10.3390/life5010459
・Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles; 共著, Biotechnology Letters (2014) 36 (6), 1253–1261. doi:10.1007/s10529-014-1485-6
・Crowding by Anionic Nanoparticles Causes DNA Double-Strand Instability and Compaction; 共著, The Journal of Physical Chemistry B (2014) 118 (5), 1256–1262. doi:10.1021/jp4107712
・pH Switching That Crosses over the Isoelectric Point (pI) Can Improve the Entrapment of Proteins within Giant Liposomes by Enhancing Protein-Membrane Interaction; 共著, Langmuir (2014) 30(2), 554-563. doi:10.1021/la403361j
・The binding of soluble recombinant human Fcγ receptor I for human immunoglobulin G is conferred by its first and second extracellular domains; 共著, Molucular Immunology, (2013) 54(3-4), 403-407. doi:10.1016/j.molimm.2013.01.007
・Engineering of recombinant human Fcγ receptor I by directed evolution; 共著, Protein Engineering, Design & Selection, (2012) 25(12), 835-842. doi:10.1093/protein/gzs053
・Efficient expression of recombinant soluble human FcγRI in mammalian cells and its characterization; 共著, Protein Expression and Purification, (2012) 82(1), 155–161. doi: 10.1016/j.pep.2011.12.006
・Monitoring of membrane collapse and enzymatic reaction with single giant liposomes embedded in agarose gel; 共著, Colloid Polym. Sci., (2011) 289(12), 1337-1346. doi:10.1007/s00396-011-2463-3
・Cadherin-integrated liposomes with potential application in a drug delivery system; 共著, Biomaterials, (2011) 32(36), 9899-9907. doi: 10.1016/j.biomaterials.2011.09.008
・Preparation of connexin43-integrated giant liposomes by a baculovirus expression-liposome fusion; 共著, Biotechnol. Bioeng., (2010) 107(5), 836-843. doi:10.1002/bit.22845
・Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles; 共著, Biochim. Biophys. Acta (BBA) Biomembranes, (2010) 1798 (9), 1625-1631. doi:10.1016/j.bbamem.2010.05.011
・Diagnosis and discrimination of autoimmune Graves’ disease and Hashimoto’s disease using thyroid-stimulating hormone receptor-containing recombinant proteoliposomes; 共著, J. Biosci. Bioeng. (2009) 108(6), 551–556. doi:10.1016/j.jbiosc.2009.06.006
・Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar; 共著, Colloids Surf. B: Biointerfaces (2009) 68, 98-105. doi:10.1016/j.colsurfb.2008.09.023
・Development of a novel preparation method of recombinant proteoliposomes using baculovirus gene expression systems; 共著, J. Biochem. (2008) 144(6), 763-770. doi:10.1093/jb/mvn125
・Unbinding of lipid bilayers induced by osmotic pressure in relation to unilamellar vesicle formation;共著, EPL Europhys. Lett. (2007) 80, 48002-p1~p6. doi:10.1209/0295-5075/80/48002
・Enhancement and inhibition of DNA transcriptional activity by spermine: A marked difference between linear and circular templates; 共著, FEBS Lett. (2005) 579, 5119-5122. doi:10.1016/j.febslet.2005.07.095
・All-or-none switching of transcriptional activity on single DNA molecules caused by a discrete conformational transition; 共著, Appl. Phys. Lett. (2005) 86,223901-1~3 doi:10.1063/1.1937990
・Gene Expression Within Cell-Sized Lipid Vesicles; 共著, ChemBioChem (2003) 4, 1172-1175. doi:10.1002/cbic.200300630
・NTP Concentration Switches Transcriptional Activity by Changing the Large-scale Structure of DNA; 共著, Biomacromolecules (2003) 4(5), 1121-1125. doi:10.1021/bm034017w
・Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition; 共著, Biophys. Chem. (2003) 106, 23-29. doi:10.1016/S0301-4622(03)00138-8
・Folding transition of large DNA completely inhibits the action of a restriction endonuclease as revealed by single-chain observation; 共著, FEBS Lett. (2002) 530, 143-146. doi:10.1016/S0014-5793(02)03448-8
・Giant liposome as a biochemical reactor: transcription of DNA and transportation by laser tweezers; 共著, Langmuir (2001) 17, 7225-7228. doi:10.1021/la010887s
・Intra-molecular phase segregation in a single polyelectrolyte chain; 共著, J. Chem. Phys. (2001) 114, 6942-6949. doi:10.1063/1.1342810
・RNA switches the higher-order structure of DNA; 共著, Biophys. Chem. (1999) 82, 1-8. doi:10.1016/S0301-4622(99)00098-8

<国際学会プロシーディングス>
・Specific localization of living cells in water/water microdroplets toward the spontaneous generation of 3D cell-assembly: Experiments with red blood cells and NAMRU mouse mammary gland epithelial cells; 共著, IEEE 2018 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2018, pp. 1-5. DOI: 10.1109/MHS.2018.8887039
・Giant Liposomes as Microcapsules with Large Trapping Volumes: Downsizing through Various Membrane Filters and Analysis with a Calcein Quenching Method; 共著, IEEE 2011 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2011 Micro-Nano Global COE (2011), pp. 439-444. DOI: 10.1109/MHS.2011.6102228
・G protein Coupled Receptors (GPCRs) Reconstituted on Recombinant Proteoliposomes using Baculovirus-Liposome Membrane Fusion;共著, IEEE 2009 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2009 Micro-Nano COE (2009) , pp. 202-207. DOI: 10.1109/MHS.2009.5351994
・Reconstitution and Microscopic Observation of G Protein Subunits on Giant Liposomes: Attempt to Construct a Cell Model with Functional Membrane Protein Components; 共著, IEEE 2008 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2008 Micro-Nano COE (2008) , pp. 145-150. DOI: 10.1109/MHS.2008.4752439
・Display of Recombinant Membrane Receptors on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane Protein Systems; 共著, IEEE 2007 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2007 Micro-Nano COE (2007), pp. 102-107. DOI: 10.1109/MHS.2007.4420834
・Membrane Fusion between a Giant Vesicle and Small Enveloped Particles: Possibilities for the Application to Construct Model Cells; 共著, IEEE 2006 International Symposium on Micro-NanoMechatronics and Human Science, MHS 2006 Micro-Nano COE (2006), pp. 7-12. DOI: 10.1109/MHS.2006.320308
・Giant vesicle as a simple model of a living cell: Construction of biochemical microreactors; 共著, IEEE Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, MHS 2005 Micro-Nano COE (2005), pp. 85-89.
・DNA conformation and transcriptional properties : a higher-order of silence; 共著, IEEE Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, MHS 2005 Micro-Nano COE (2005), pp. 81-84. DOI: 10.1109/MHS.2005.1589968
・Development of Orally Administrated Liposome Vaccines Against Bacteria- and Virus-Infectious Diseases in Cultured Fishes;共著, In: Immunology 2004 (The proceeding of the 12th International Congress of Immunology, ed. By Skamene, E.) Medimond S.r.l. (Bologna, Italy), p225-228, 2004.

<総説・解説・著書等>
・細胞様構造と相分離:モデル実験によるアプローチ; 共著, 現代化学・増刊46 相分離生物学の全貌 (白木賢太郎 編) 東京化学同人,第IV部 生物学的相分離の理論42, 209-213, 2020年
・水性ミクロ相分離:バイオケミカルリアクターへの利用; 単著, 化学工業 (2020年) 71(4) 242-246.
・Nonspecific characteristics of macromolecules create specific effects in living cells; 共著, Biophysical Reviews (2020) 12, 425–434. DOI: 10.1007/s12551-020-00673-w
・Future perspectives of therapeutic monoclonal antibodies; 共著, Immunotherapy (future medicine), (2019) 11(2), 119-127.DOI: 10.2217/imt-2018-0130
・ロバストな細胞膜マーカ解析探針としての人工細胞脂質膜ナノビーズ;単著,豊田研究報告,(2018) No.71, 170-171.
・Production of Monoclonal Antibodies (2016) 25.6 544-545; 共著 In: Culrure of Animal Cells: A Manual of Basic Technique and Specialized Applications, Seven Edition (authoured/edited by R. Ian Freshney), John Wiley & Sons, Inc., Hoboken, NJ. (Jan. 2016, Wiley-Blackwell)
・人工細胞システム構成に役立てたい組換えプロテオリポソーム技術;単著,日本化学会・生体機能関連化学部会ニュースレター,(2014) 28(3),15-18.
・わかる理工系のための化学;共編著, 共立出版, 2012年
・Monoclonal antibodies based on hybridoma technology; 共著, Pharmaceutical Patent Analyst, (2013) 2(2), 249-263. doi: 10.4155/ppa.13.2
・次世代ハイブリドーマテクノロジー;共著, 次世代医薬開発に向けた抗体工学の最前線(熊谷泉 監修),シーエムシー出版,第10章(pp.197-202),2012年
・タンパク質研究における巨大リポソームの利用法;共著,リアルタイム計測による生命現象の解析(村田静昭 監修),シーエムシー出版,第10章(pp.107-116),2011年
・Hybridoma technologies for antibody production; 共著, Immunotherapy (2011) 3(3), 371-380. doi:10.2217/imt.11.4
・Construction of an In Vitro Model of a Living Cellular System; 共著,The Minimal Cell, The Biophysics of Cell Compartment and the Origin of Cell Functionality (P.L. Luisi, P. Stano, Eds.), Springer, Chap 10 (pp.173-193), 2011. doi:10.1007/978-90-481-9944-0_10
・人工細胞ベシクルへのシグナル伝達経路の再構成;単著,ナノ学会会報 (2010) 9(1), 19-23.
・人工細胞研究における巨大リポソーム;単著, 人工血液(2010)18(1), 15-24.
・Recent Advances in Antigen-Based Generation of Monoclonal Antibodies;共著, Current Immunology Reviews (2010) 6(1), 56-61.
・Recombinant Proteoliposomes Prepared Using Baculovirus Expression Systems;共著,Methods in Enzymology, Liposomes Part G (2009) 465, 95-109. doi:10.1016/S0076-6879(09)65005-9
・序論2:細胞機能の模倣とモデルシステムの構築;共著,ナノメディシン -ナノテクの医療応用-(宇理須恒雄編),オーム社,第4章-2(pp.279-285)2008年.
蛍光法-FRETを中心に-;共著,リポソーム応用の新展開~人工細胞の開発に向けて~(秋吉一成,辻井薫監修),エヌ・ティー・エス,第3章第6節(pp.84-89),2005年.
・Genetic Nanomedicine and Tissue Engineering; 共著; Medical Clinics of North America (2007) 91 (5), 889-898. doi:10.1016/j.mcna.2007.05.001
・人工モデル細胞とミクロ・ロボティクス;共著,日本ロボット学会誌(2007) vol.25 (No.2) pp.186-190.
・A message from biomembrane systems: Supramolecular biosystems and system-specific principles, 共著, Recent Res. Devel. Biophys. Biochem. (2003) 3, 585-597.
・DNAの折り畳み転移と遺伝子活性;共著,バイオサイエンスとインダストリー(2003)61, 11-16.
・DNAの高次構造スイッチングと遺伝子発現;共著,生物物理 (2002) 42, 179-184.doi:10.2142/biophys.42.179